The book was found

Working Effectively With Legacy
Code

WORKING
EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

' /g DOWNLOAD EBOOK
i,


http://ebooksperfect.com/en-us/read-book/06pk8/working-effectively-with-legacy-code.pdf?r=Dw%2FsENbwoeUgrnnYJwNQVadOWSTFS2E5Y5GBlrVg5Ac%3D
http://ebooksperfect.com/en-us/read-book/06pk8/working-effectively-with-legacy-code.pdf?r=3iqLiSoXaZF827QzhPZdzgcBDcGQ0KH8ey6fGdBXKOw%3D

Synopsis

Get more out of your legacy systems: more performance, functionality, reliability, and manageability
Is your code easy to change? Can you get nearly instantaneous feedback when you do change it?
Do you understand it? If the answer to any of these questions is no, you have legacy code, and it is
draining time and money away from your development efforts. In this book, Michael Feathers offers
start-to-finish strategies for working more effectively with large, untested legacy code bases. This
book draws on material Michael created for his renowned Object Mentor seminars: techniques
Michael has used in mentoring to help hundreds of developers, technical managers, and testers
bring their legacy systems under control. adding features, fixing bugs, improving design, optimizing
performance Getting legacy code into a test harness Writing tests that protect you against
introducing new problems Techniques that can be used with any language or platform--with
examples in Java, C++, C, and C# Accurately identifying where code changes need to be made
Coping with legacy systems that aren t object-oriented Handling applications that don t seem to
have any structureThis book also includes a catalog of twenty-four dependency-breaking
techniques that help you work with program elements in isolation and make safer changes. (c)

Copyright Pearson Education. All rights reserved.

Book Information

Paperback: 456 pages

Publisher: Prentice Hall; 1 edition (October 2, 2004)

Language: English

ISBN-10: 0131177052

ISBN-13: 978-0131177055

Product Dimensions: 6.9 x 1.1 x 9 inches

Shipping Weight: 1.5 pounds (View shipping rates and policies)

Average Customer Review: 4.6 out of 5 starsA A See all reviewsA (104 customer reviews)

Best Sellers Rank: #52,427 in Books (See Top 100 in Books) #22 inA Books > Computers &
Technology > Programming > Software Design, Testing & Engineering > Testing #59 inA Books >
Textbooks > Computer Science > Software Design & Engineering #133 inA Books > Computers &

Technology > Programming > Software Design, Testing & Engineering > Software Development

Customer Reviews

The average book on Agile software development describes a fairyland of greenfield projects, with

wall-to-wall tests that run after every few edits, and clean & simple source code.The average



software project, in our industry, was written under some aspect of code-and-fix, and without
automated unit tests. And we can't just throw this code away; it represents a significant effort
debugging and maintaining. It contains many latent requirements decisions. Just as Agile processes
are incremental, Agile adoption must be incremental too. No more throwing away code just because
it looked at us funny.Mike begins his book with a very diplomatic definition of "Legacy". Il skip
ahead to the undiplomatic version: Legacy code is code without unit tests.Before cleaning that code
up, and before adding new features and removing bugs, such code must be de-legacified. It needs
unit tests.To add unit tests, you must change the code. To change the code, you need unit tests to
show how safe your change was.The core of the book is a cookbook of recipes to conduct various
careful attacks. Each presents a particular problem, and a relatively safe way to migrate the code
towards tests.Code undergoing this migration will begin to experience the benefits of unit tests, and
these benefits will incrementally make new tests easier to write. These efforts will make aspects of a
legacy codebase easy to change.It's an unfortunate commentary on the state of our programming

industry how much we need this book.

Martin Fowler’s book on Refactoring showed us how to improve the design of our code. We learned
to make changes safely, by taking small, rote steps, and by ensuring that we ran our tests after
each small change. But what if we’re working on the typical ugly system with no tests? In Working
Effectively With Legacy Code, Michael Feathers tackles the problem that most of us end up dealing
with.Feathers does an excellent job of articulating the problems and scenarios, using clear
examples from C, C++, Java, and C#. Many of the code examples look a lot like real examples |
come across all the time--they don’t appear to be fabricated.Working Effectively With Legacy Code
contains a catalog that provides a wealth of solutions. The catalog shows how to resolve concerns
like, "I'm changing the same code all over the place" and "how do | safely change procedural
code?"The book is highly entertaining and comes across as a conversation with a really sharp,
really patient guru developer. Often, it's a chore to slog through code-heavy books. But Feathers
manages to keep my attention with interesting stories, loads of examples, and well-written text.|
think that Working Effectively With Legacy Code is an important book. The vast majority of existing
code presents the classic catch-22: you can’t change it safely because it doesn’t have tests, and
you can’t write tests without changing it to easily support testing. It's not an easy problem, and most
people will give you high-level ideas for solving it. Feathers is the first person to dig deep and
present a wealth of knowledge and insight on the problem, all in one place. I'll be pulling this book

from my shelf for years to come.



"Working Effectively with Legacy Code" is a very valuable resource. The author defines "legacy
code" as "code without tests." It doesn’t matter whether the code was written last week or ten years
ago. There is more emphasis on old code that nobody understands, mainly because it is messier
and harder to work with.The examples in the book are mainly in C, C++ and Java, but there are a
couple in C# and Ruby. While it is essential to know one of these languages, the author provides
enough information to understand the others. When a technique only applies to a certain language,
it is clearly indicated.The author shows how different diagrams can help you learn how to
understand code. In addition to UML, there are dependency and effect sketches. The author uses
these to show how to think about understanding and refactoring. Other tools, such as refactoring
browsers and mocks are explained.Speaking of refactoring, there are "dependency breaking
techniques" (aka refactorings) with step-by-step instructions (Martin Fowler style) throughout the
book. There are also explanations of why patterns and design rules exist. Most importantly, there
are lots and lots of cross-references and an excellent index.Working with legacy code isn’t fun, but
this book helps make it as painless as possible. With the split emphasis between
psychological/understanding/techniques and refactoring, this book is both a great read and an

excellent reference.

| work at a decent sized telecommunications company. We have legacy code written in C that is
over 1 million lines of code. Some of the code was written as far back as 1988. Needless to say, we
didn’t follow TDD and there are not a lot of unit tests. We have recently increase the number
developers to add features to this code base and | was hoping that this book would help.We’ve
been doing a "techincal book club" for a while as part of continuous training. I've had about 20
engineers reading this book a few chapters a week and discussing them. Most of the reviews from
the group have been negative. Hard to read, annoying editorial errors (duplicate text on following
pages), and not really getting a lot out of it. The main problem is that our system is not using an
object oriented language so a lot (most) of the techniques are not relevant.At first | thought it was
just me, but as | asked the other engineers, there was a lot of concensus, even from engineers that
have worked on Java/C++ projects in the past.| picked this book because of the following taglines
on the back of the book:* Techniques that can be used with any language or platform-with examples
in Java, C++, C, and C#* Coping with legacy systems that aren’t object-orientedThere is one small
section on non-object oriented code. It basically says that you should slowly migrate to an object

oriented language.Anyway - we’ve stopped reading the book. If you're code is already object



oriented, this is probably a great book. If it's not, | wouldn’t bother. Instead pick up a differnt book on

how to migrate the code to an object oriented language.

Download to continue reading...

Working Effectively with Legacy Code 2012 International Plumbing Code (Includes International
Private Sewage Disposal Code) (International Code Council Series) The Sharing Knife, Vol. 2:
Legacy (Legacy (Blackstone Audio)) Fighting for Total Person Unionism: Harold Gibbons, Ernest
Calloway, and Working-Class Citizenship (Working Class in American History) Learning to Labor:
How Working Class Kids Get Working Class Jobs Working With Independent Contractors (Working
with Independent Contractors: The Employer’s Legal Guide) The 5 Love Languages of Children:
The Secret to Loving Children Effectively The 5 Love Languages of Teenagers: The Secret to
Loving Teens Effectively Internal Cleansing : Rid Your Body of Toxins to Naturally and Effectively
Fight Heart Disease, Chronic Pain, Fatigue, PMS and Menopause Symptoms, and More (Revised
2nd Edition) Writing That Works; How to Communicate Effectively In Business Official TOEIC
Vocabulary 3000: Become a True Master of TOEIC Vocabulary...Quickly and Effectively! Effectively
Managing and Leading Human Service Organizations (SAGE Sourcebooks for the Human
Services) People Tactics: Become the Ultimate People Person - Strategies to Navigate Delicate
Situations, Communicate Effectively, and Win Anyone Over (People Skills) People Tactics:
Strategies to Navigate Delicate Situations, Communicate Effectively, and Win Anyone Over The
SAP Green Book: A Business Guide for Effectively Managing the SAP Lifecycle REAL ESTATE: A
Guide for First Time Agents to Effectively Grow Your Business From Nothing to a Sustainable
Growing Career (Beginner's Guide, Career Management, Lead Generation, Real Estate Investors)
Drum Class Method, Vol 1: Effectively Presenting the Rudiments of Drumming and the Reading of
Music Drum Class Method, Vol 2: Effectively Presenting the Rudiments of Drumming and the
Reading of Music The Crowdfunding Myth: Legally and Effectively Raising Money for your Business
Communication at the Workplace: How to Interact More Effectively with Your Coworkers, Your Key

to Success

Dmca


http://ebooksperfect.com/en-us/read-book/06pk8/working-effectively-with-legacy-code.pdf?r=hXZztmdkyFeN1rWntQYu3Gy468wY%2F0QCoci3LU%2FNDYA%3D
http://ebooksperfect.com/en-us/dmca

